Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 119(47): e2213361119, 2022 11 22.
Article in English | MEDLINE | ID: covidwho-2269357

ABSTRACT

Severe COVID-19 is characterized by a prothrombotic state associated with thrombocytopenia, with microvascular thrombosis being almost invariably present in the lung and other organs at postmortem examination. We evaluated the presence of antibodies to platelet factor 4 (PF4)-polyanion complexes using a clinically validated immunoassay in 100 hospitalized patients with COVID-19 with moderate or severe disease (World Health Organization score, 4 to 10), 25 patients with acute COVID-19 visiting the emergency department, and 65 convalescent individuals. Anti-PF4 antibodies were detected in 95 of 100 hospitalized patients with COVID-19 (95.0%) irrespective of prior heparin treatment, with a mean optical density value of 0.871 ± 0.405 SD (range, 0.177 to 2.706). In contrast, patients hospitalized for severe acute respiratory disease unrelated to COVID-19 had markedly lower levels of the antibodies. In a high proportion of patients with COVID-19, levels of all three immunoglobulin (Ig) isotypes tested (IgG, IgM, and IgA) were simultaneously elevated. Antibody levels were higher in male than in female patients and higher in African Americans and Hispanics than in White patients. Anti-PF4 antibody levels were correlated with the maximum disease severity score and with significant reductions in circulating platelet counts during hospitalization. In individuals convalescent from COVID-19, the antibody levels returned to near-normal values. Sera from patients with COVID-19 induced higher levels of platelet activation than did sera from healthy blood donors, but the results were not correlated with the levels of anti-PF4 antibodies. These results demonstrate that the vast majority of patients with severe COVID-19 develop anti-PF4 antibodies, which may play a role in the clinical complications of COVID-19.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , Male , Female , Platelet Factor 4 , Heparin , Antibodies , Immunologic Factors , Severity of Illness Index
2.
Sci Rep ; 12(1): 21528, 2022 12 13.
Article in English | MEDLINE | ID: covidwho-2160307

ABSTRACT

Monocyte distribution width (MDW) is a novel marker of monocyte activation, which is known to occur in the immune response to viral pathogens. Our objective was to determine the performance of MDW and other leukocyte parameters as screening tests for SARS-CoV-2 and influenza infection. This was a prospective cohort analysis of adult patients who underwent complete blood count (CBC) and SARS-CoV-2 or influenza testing in an Emergency Department (ED) between January 2020 and July 2021. The primary outcome was SARS-CoV-2 or influenza infection. Secondary outcomes were measures of severity of illness including inpatient hospitalization, critical care admission, hospital lengths of stay and mortality. Descriptive statistics and test performance measures were evaluated for monocyte percentage, MDW, white blood cell (WBC) count, and neutrophil to lymphocyte ratio (NLR). 3,425 ED patient visits were included. SARS-CoV-2 testing was performed during 1,922 visits with a positivity rate of 5.4%; influenza testing was performed during 2,090 with a positivity rate of 2.3%. MDW was elevated in patients with SARS-Cov-2 (median 23.0U; IQR 20.5-25.1) or influenza (median 24.1U; IQR 22.0-26.9) infection, as compared to those without (18.9U; IQR 17.4-20.7 and 19.1U; 17.4-21, respectively, P < 0.001). Monocyte percentage, WBC and NLR values were within normal range in patients testing positive for either virus. MDW identified SARS-CoV-2 and influenza positive patients with an area under the curve (AUC) of 0.83 (95% CI 0.79-0.86) and 0.83 (95% CI 0.77-0.88), respectively. At the accepted cut-off value of 20U for MDW, sensitivities were 83.7% (95% CI 76.5-90.8%) for SARS-CoV-2 and 89.6% (95% CI 80.9-98.2%) for influenza, compared to sensitivities below 45% for monocyte percentage, WBC and NLR. MDW negative predictive values were 98.6% (95% CI 98.0-99.3%) and 99.6% (95% CI 99.3-100.0%) respectively for SARS-CoV-2 and influenza. Monocyte Distribution Width (MDW), available as part of a routine complete blood count (CBC) with differential, may be a useful indicator of SARS-CoV-2 or influenza infection.


Subject(s)
COVID-19 , Influenza, Human , Adult , Humans , SARS-CoV-2 , COVID-19 Testing , Influenza, Human/diagnosis , Monocytes , Prospective Studies , COVID-19/diagnosis
3.
Hum Vaccin Immunother ; 18(7): 2153538, 2022 12 30.
Article in English | MEDLINE | ID: covidwho-2151607

ABSTRACT

Vaccines are effective tools to prevent COVID-19-related morbidity. However, coverage is low throughout sub-Saharan Africa. Uptake of public health measures, perceptions of COVID-19 illness and vaccines, and intention to vaccinate were evaluated in 2021-2022 in rural Zambia. Adherence to public health measures, perceptions of COVID-19 risk and severity, and vaccine acceptance increased significantly over time, particularly in December 2021, coinciding with the fourth pandemic wave and relaunch of the national vaccine campaign. Vaccine acceptance was associated with perceptions of vaccine safety and effectiveness, but not disease severity. These findings highlight the importance of strong pandemic response and public communication for increased uptake of mitigatory measures, including vaccine acceptance.


Subject(s)
COVID-19 , Vaccines , Humans , Public Health , COVID-19/prevention & control , Pandemics/prevention & control , Zambia/epidemiology , Vaccination
4.
Trop Med Int Health ; 27(7): 647-654, 2022 07.
Article in English | MEDLINE | ID: covidwho-1861557

ABSTRACT

OBJECTIVES: With the emergence of the COVID-19 pandemic, restrictions were implemented globally to control the virus. Data on respiratory pathogens in sub-Saharan Africa during the COVID-19 pandemic are scarce. This analysis was conducted to evaluate patterns of respiratory pathogens in rural Zambia before and during the first year of the pandemic. METHODS: Surveillance was established in December 2018 at Macha Hospital in southern Zambia. Patients with respiratory symptoms in the outpatient and inpatient clinics were recruited. Nasopharyngeal samples were collected and tested for respiratory pathogens. The prevalence of respiratory symptoms and pathogens was evaluated and compared in the first (December 10, 2018-December 9, 2019) and second (December 10, 2019-November 30, 2020) years of surveillance. RESULTS: Outpatient visits and admissions for respiratory illness significantly decreased from the first to second year, especially among children. SARS-CoV-2 was not detected from any participants in Year 2. Among outpatients and inpatients with respiratory symptoms, the prevalence of respiratory syncytial virus and influenza viruses decreased from the first to second year. In contrast, the prevalence of rhinovirus/enterovirus, metapneumovirus and parainfluenza virus increased. CONCLUSIONS: The epidemiology of respiratory viruses in rural Zambia changed during the first year of the COVID-19 pandemic, suggesting that public health interventions may have had an impact on the introduction and circulation of respiratory pathogens in this area.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , COVID-19/epidemiology , Child , Humans , Pandemics , Respiratory Tract Infections/epidemiology , Zambia/epidemiology
5.
Healthcare (Basel) ; 10(3)2022 Mar 20.
Article in English | MEDLINE | ID: covidwho-1760511

ABSTRACT

Early in the COVID-19 pandemic (March-July 2020 in Baltimore), emergency department (ED) healthcare workers (HCWs) were considered to be at greater risk of contracting SARS-CoV-2. Limited data existed, however, on the prevalence of SARS-CoV-2 infection and its impact in this workforce population. We enrolled 191 ED HCWs from a tertiary academic center, administered baseline and weekly surveys, and tested them twice (July and December 2020) for serum antibodies against SARS-CoV-2 spike protein. Approximately 6% (11 of 191, 5.8%) of ED HCWs had spike antibodies in July, a prevalence that doubled by December (21 of 174, 12.1%). A positive PCR test was self-reported by 15 of 21 (71%) seropositive and 6 of 153 (4%) seronegative HCWs (p < 0.001). Of the total 27 HCWs who had antibodies and/or were PCR positive, none required hospitalization, 18 (67%) had a self-perceived COVID-19 illness, and 12 of the 18 reported symptoms. The median number of missed workdays was 8.5 (ranging from 2 to 21). While most seropositive ED HCWs who reported symptoms took work absences, none required hospitalization, indicating that COVID-19's impact on staffing prior to vaccination was not as great as feared.

6.
Clin Infect Dis ; 74(2): 254-262, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662114

ABSTRACT

BACKGROUND: Several inflammatory cytokines are upregulated in severe coronavirus disease 2019 (COVID-19). We compared cytokines in COVID-19 versus influenza to define differentiating features of the inflammatory response to these pathogens and their association with severe disease. Because elevated body mass index (BMI) is a known risk factor for severe COVID-19, we examined the relationship of BMI to cytokines associated with severe disease. METHODS: Thirty-seven cytokines and chemokines were measured in plasma from 135 patients with COVID-19, 57 patients with influenza, and 30 healthy controls. Controlling for BMI, age, and sex, differences in cytokines between groups were determined by linear regression and random forest prediction was used to determine the cytokines most important in distinguishing severe COVID-19 and influenza. Mediation analysis was used to identify cytokines that mediate the effect of BMI and age on disease severity. RESULTS: Interleukin-18 (IL-18), IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α) were significantly increased in COVID-19 versus influenza patients, whereas granulocyte macrophage colony-stimulating factor, interferon-γ (IFN-γ), IFN-λ1, IL-10, IL-15, and monocyte chemoattractant protein 2 were significantly elevated in the influenza group. In subgroup analysis based on disease severity, IL-18, IL-6, and TNF-α were elevated in severe COVID-19, but not in severe influenza. Random forest analysis identified high IL-6 and low IFN-λ1 levels as the most distinct between severe COVID-19 and severe influenza. Finally, IL-1RA was identified as a potential mediator of the effects of BMI on COVID-19 severity. CONCLUSIONS: These findings point to activation of fundamentally different innate immune pathways in severe acute respiratory syndrome coronavirus 2 and influenza infection, and emphasize drivers of severe COVID-19 to focus both mechanistic and therapeutic investigations.


Subject(s)
COVID-19 , Influenza, Human , Chemokines , Cytokines , Humans , SARS-CoV-2
7.
J Infect Dis ; 224(4): 606-615, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1369104

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a severe clinical phenotype of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that remains poorly understood. METHODS: Hospitalized children <18 years of age with suspected coronavirus disease 2019 (COVID-19) (N = 53) were recruited into a prospective cohort study; 32 had confirmed COVID-19, with 16 meeting the US Centers for Disease Control criteria for MIS-C. Differences in nasopharyngeal viral ribonucleic acid (RNA) levels, SARS-CoV-2 seropositivity, and cytokine/chemokine profiles were examined, including after adjustments for age and sex. RESULTS: The median ages for those with and without MIS-C were 8.7 years (interquartile range [IQR], 5.5-13.9) and 2.2 years (IQR, 1.1-10.5), respectively (P = .18), and nasopharyngeal levels of SARS-CoV-2 RNA did not differ significantly between the 2 groups (median 63 848.25 copies/mL versus 307.1 copies/mL, P = .66); 75% of those with MIS-C were antibody positive compared with 44% without (P = .026). Levels of 14 of 37 cytokines/chemokines (interleukin [IL]-1RA, IL-2RA, IL-6, IL-8, tumor necrosis factor-α, IL-10, IL-15, IL-18, monocyte chemoattractant protein [MCP]-1, IP-10, macrophage-inflammatory protein [MIP]-1α, MCP-2, MIP-1ß, eotaxin) were significantly higher in children with MIS-C compared to those without, irrespective of age or sex (false discovery rate <0.05; P < .05). CONCLUSIONS: The distinct pattern of heightened cytokine/chemokine dysregulation observed with MIS-C, compared with acute COVID-19, occurs across the pediatric age spectrum and with similar levels of nasopharyngeal SARS-CoV-2 RNA.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Chemokines/metabolism , Cytokines/metabolism , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/metabolism , Systemic Inflammatory Response Syndrome/virology , Adolescent , Age Factors , Antibodies, Viral/immunology , Biomarkers , COVID-19/diagnosis , COVID-19/epidemiology , Child , Child, Preschool , Host-Pathogen Interactions , Humans , Male , RNA, Viral , Serologic Tests , Severity of Illness Index , Sex Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Viral Load
8.
Int J Infect Dis ; 102: 291-298, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-893936

ABSTRACT

OBJECTIVES: The role of respiratory co-infections in modulating disease severity remains understudied in southern Africa, particularly in rural areas. This study was performed to characterize the spectrum of respiratory pathogens in rural southern Zambia and the prognostic impact of co-infections. METHODS: Respiratory specimens collected from inpatient and outpatient participants in a viral surveillance program in 2018-2019 were tested for selected viruses and atypical bacteria using the Xpert Xpress Flu/RSV assay and FilmArray Respiratory Panel EZ. Participants were followed for 3-5 weeks to assess their clinical course. Multivariable regression was used to examine the role of co-infections in influencing disease severity. RESULTS: A respiratory pathogen was detected in 63.2% of samples from 671 participants who presented with influenza-like illness. Common pathogens identified included influenza virus (18.2% of samples), respiratory syncytial virus (RSV) (11.8%), rhinovirus (26.4%), and coronavirus (6.0%). Overall, 6.4% of participants were co-infected with multiple respiratory pathogens. Compared to mono-infections, co-infections were found not to be associated with severe clinical illness either overall (relative risk (RR) 0.72, 95% confidence interval (CI) 0.39-1.32) or specifically with influenza virus (RR 0.80, 95% CI 0.14-4.46) or RSV infections (RR 0.44, 95% CI 0.17-1.11). CONCLUSIONS: Respiratory infections in rural southern Zambia were associated with a wide range of viruses. Respiratory co-infections in this population were not associated with clinical severity.


Subject(s)
Coinfection/virology , Respiratory Tract Infections/virology , Virus Diseases/virology , Viruses/isolation & purification , Adolescent , Adult , Biodiversity , Child , Child, Preschool , Coinfection/epidemiology , Female , Humans , Infant , Male , Middle Aged , Respiratory Tract Infections/epidemiology , Rural Population/statistics & numerical data , Virus Diseases/epidemiology , Viruses/classification , Viruses/genetics , Young Adult , Zambia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL